Has1 regulates consecutive maturation and processing steps for assembly of 60S ribosomal subunits
نویسندگان
چکیده
Ribosome biogenesis requires ∼200 assembly factors in Saccharomyces cerevisiae. The pre-ribosomal RNA (rRNA) processing defects associated with depletion of most of these factors have been characterized. However, how assembly factors drive the construction of ribonucleoprotein neighborhoods and how structural rearrangements are coupled to pre-rRNA processing are not understood. Here, we reveal ATP-independent and ATP-dependent roles of the Has1 DEAD-box RNA helicase in consecutive pre-rRNA processing and maturation steps for construction of 60S ribosomal subunits. Has1 associates with pre-60S ribosomes in an ATP-independent manner. Has1 binding triggers exonucleolytic trimming of 27SA3 pre-rRNA to generate the 5' end of 5.8S rRNA and drives incorporation of ribosomal protein L17 with domain I of 5.8S/25S rRNA. ATP-dependent activity of Has1 promotes stable association of additional domain I ribosomal proteins that surround the polypeptide exit tunnel, which are required for downstream processing of 27SB pre-rRNA. Furthermore, in the absence of Has1, aberrant 27S pre-rRNAs are targeted for irreversible turnover. Thus, our data support a model in which Has1 helps to establish domain I architecture to prevent pre-rRNA turnover and couples domain I folding with consecutive pre-rRNA processing steps.
منابع مشابه
60S ribosomal subunit assembly dynamics defined by semi-quantitative mass spectrometry of purified complexes
During the highly conserved process of eukaryotic ribosome formation, RNA follows a maturation path with well-defined, successive intermediates that dynamically associate with many pre-ribosomal proteins. A comprehensive description of the assembly process is still lacking. To obtain data on the timing and order of association of the different pre-ribosomal factors, a strategy consists in the u...
متن کاملIdentification of the binding site of Rlp7 on assembling 60S ribosomal subunits in Saccharomyces cerevisiae.
Eukaryotic ribosome assembly requires over 200 assembly factors that facilitate rRNA folding, ribosomal protein binding, and pre-rRNA processing. One such factor is Rlp7, an essential RNA binding protein required for consecutive pre-rRNA processing steps for assembly of yeast 60S ribosomal subunits: exonucleolytic processing of 27SA3 pre-rRNA to generate the 5' end of 5.8S rRNA and endonucleoly...
متن کاملStepwise assembly of the earliest precursors of large ribosomal subunits in yeast
Small ribosomal subunits are co-transcriptionally assembled on the nascent precursor rRNA in Saccharomyces cerevisiae. It is unknown how the highly intertwined structure of 60S large ribosomal subunits is initially formed. Here, we affinity purified and analyzed a series of pre-60S particles assembled in vivo on plasmid-encoded pre-rRNA fragments of increasing lengths, revealing a spatiotempora...
متن کاملEbp2 and Brx1 function cooperatively in 60S ribosomal subunit assembly in Saccharomyces cerevisiae
The yeast protein Ebp2 is required for early steps in production of 60S ribosomal subunits. To search for cofactors with which Ebp2 functions, or substrates on which it acts, we screened for mutants that were synthetically lethal (sl) with the ebp2-14 mutation. Four different mutant alleles of the 60S ribosomal subunit assembly factor Brx1 were found. To investigate defects of the double mutant...
متن کاملRibosomal Proteins Orchestrate the Biogenesis of Eukaryotic Large Ribosomal Subunits in a Sequential Fashion
Ribosome biogenesis in eukaryotes involves the transcription, folding, and processing of ribosomal RNA (rRNA), as well as the concomitant assembly of ribosomal proteins. Several hundred trans-acting assembly factors also play a role in the complex process of ribosome biogenesis. Investigations of the construction of ribosomes have focused primarily on the roles of these assembly factors. Little...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 41 شماره
صفحات -
تاریخ انتشار 2013